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Abelian Surfaces

To generalise supersingular elliptic curves over F, (p > 3) to genus 2, we
consider superspecial (principally polarised) abelian surfaces over Fp,.
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consider superspecial (principally polarised) abelian surfaces over Fp,.

There are two types:
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Abelian Surfaces

To generalise supersingular elliptic curves over F, (p > 3) to genus 2, we

consider superspecial (principally polarised) abelian surfaces over Fp,.

There are two types:
@ Products of supersingular elliptic curves E x E’

@ Jacobians Jac(C) of genus 2 curves C

We consider them up to Fp—isomorphism and label these classes with:

@ Pairs of j-invariants (j(E),j(E’))
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To generalise supersingular elliptic curves over F, (p > 3) to genus 2, we
consider superspecial (principally polarised) abelian surfaces over Fp,.
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@ Jacobians Jac(C) of genus 2 curves C
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Abelian Surfaces

To generalise supersingular elliptic curves over F, (p > 3) to genus 2, we
consider superspecial (principally polarised) abelian surfaces over Fp,.

There are two types:
@ Products of supersingular elliptic curves E x E’
@ Jacobians Jac(C) of genus 2 curves C

We consider them up to Fp—isomorphism and label these classes with:
@ Pairs of j-invariants (j(E),j(E’))

@ Igusa—Clebsch invariants h(C), I4(C), Is(C), ho(C) (subscript denotes
the weight of the invariant).

For superspecial (p.p.) abelian surfaces, these invariants lie in [F .
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(N, N)-Isogenies

An (N, N)-isogeny is an isogeny! ¢: A — A’, between p.p. abelian
surfaces A, A" where:
o ker¢ = (Z/NZ)? ; and

@ the isogeny respects the polarisations.

li.e., surjective group homomorphism with finite kernel
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General Isogeny Problem in Two Dimensions

In its most general form, the superspecial isogeny problem in two
dimensions asks to find an isogeny

b A— A,

between two superspecial (p.p.) abelian surfaces A/F . and A'/FF .
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General Isogeny Problem in Two Dimensions

In its most general form, the superspecial isogeny problem in two
dimensions asks to find an isogeny

p: A— A,
between two superspecial (p.p.) abelian surfaces A/F . and A'/FF .

The general isogeny problem can be viewed as finding a path between two
nodes in the superspecial isogeny graph.
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The Superspecial Isogeny Graph ['(N;F,)

Let p be a large prime, p | N.
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The Superspecial Isogeny Graph ['(N;F,)

Let p be a large prime, p | N. F(N;IF‘,,) is the graph with vertex set
S(p) = {Fp-isomorphism classes of superspecial p.p. abelian surfaces},

and whose edges are (N, N)-isogenies over [Fp,.
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The Superspecial Isogeny Graph ['(N;F,)

Let p be a large prime, p | N. F(N;IF‘,,) is the graph with vertex set
S(p) = {Fp-isomorphism classes of superspecial p.p. abelian surfaces},

and whose edges are (N, N)-isogenies over [Fp,.

Properties:

o #S(p) = O(p*)
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The Superspecial Isogeny Graph ['(N;F,)

Let p be a large prime, p | N. F(N;IF‘,,) is the graph with vertex set

S(p) = {Fp-isomorphism classes of superspecial p.p. abelian surfaces},

and whose edges are (N, N)-isogenies over [Fp,.

Properties:

o #S(p) = O(p*)
o Classes [A] € S(p) are represented by surfaces defined over IF ..
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The Superspecial Isogeny Graph ['(N;F,)

Let p be a large prime, p | N. F(N;IF‘,,) is the graph with vertex set

S(p) = {Fp-isomorphism classes of superspecial p.p. abelian surfaces},

and whose edges are (N, N)-isogenies over [Fp,.

Properties:

o #S(p) = O(p*)
o Classes [A] € S(p) are represented by surfaces defined over IF ..
@ The graph is Dy-regular, where

1
Dy =N T] A+ (2 +1).
v
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The Superspecial Isogeny Graph ['(N;F,)

Let p be a large prime, p | N. F(N;IF‘,,) is the graph with vertex set

S(p) = {Fp-isomorphism classes of superspecial p.p. abelian surfaces},

and whose edges are (N, N)-isogenies over [Fp,.

Properties:
o #S(p) = O(p*)
o Classes [A] € S(p) are represented by surfaces defined over IF ..
@ The graph is Dy-regular, where

1
Dy =N T] A+ (2 +1).
v

o No analogy of Pizer's theorem - we work off the hypothesis that
[(N;Fp) is Ramanujan
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The Superspecial Isogeny Graph ['(N;F,)
S(p) is equal to the disjoint union of:

J(p) ={[Al € S(p) : A=Jac(C)} and
E(p) :={[Al € S(p) : A= E x E' with E, E’ supersingular ECs}.
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The Superspecial Isogeny Graph I'(N;F,)

S(p) is equal to the disjoint union of:

Jac(C)} and

>~

A
A

{[Al € S(p)

J(p):

E x E' with E, E’ supersingular ECs}.

jacd

{[Al € S(p)

Ep)

O(p®) nodes with
O(p?) nodes with
OAci(p)
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Attacking the General Isogeny Problem: Costello-Smith

End node

O eJ(p)
O Al €&

Start node
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Attacking the General Isogeny Problem: Costello-Smith

O(p?) nodes with

O(p®) nodes with
OAecé(p)

OAeJp)

Step 1: Find paths from

A, A e T(p)

respectively.

O eJ(p)
O Al €&
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Attacking the General Isogeny Problem: Costello-Smith
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Attacking the General Isogeny Problem: Costello-Smith

The bottleneck of the attack is the first step: walking in [2(N; p) until
finding A € J(p) which is (N, N)-split.
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Attacking the General Isogeny Problem: Costello-Smith

The bottleneck of the attack is the first step: walking in [2(N; p) until
finding A € J(p) which is (N, N)-split.

Definition

We say the Jacobian Jac(C) of a genus 2 curve C is (N, N)-split if there
exists an (N, N)-isogeny? Jac(C) — E x E’, where E, E’ are elliptic curves.

“Separable, polarised, optimal
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Attacking the General Isogeny Problem: Costello-Smith

The bottleneck of the attack is the first step: walking in [2(N; p) until
finding A € J(p) which is (N, N)-split.

Definition

We say the Jacobian Jac(C) of a genus 2 curve C is (N, N)-split if there
exists an (N, N)-isogeny? Jac(C) — E x E’, where E, E’ are elliptic curves.

“Separable, polarised, optimal

For this reason, we focus on the first step of the algorithm.
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Attacking the General Isogeny Problem: First step

Summary: Using Richelot isogenies, Costello-Smith take walks in [(2;F,)
and detect (2,2)-splittings.
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@ We start on a node Ay € J(p).
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@ Take a step in ['(2; p) via a Richelot isogeny ¢1: Ay — A;.

Maria Corte-Real Santos (UCL) Efficient (N, N)-splitting detection ISOCRYPT 10/18



Attacking the General Isogeny Problem: First step

Summary: Using Richelot isogenies, Costello-Smith take walks in [(2;F,)
and detect (2,2)-splittings.
First step in more detail:

@ We start on a node Ay € J(p).

@ Take a step in ['(2; p) via a Richelot isogeny ¢1: Ay — A;.

© From the Richelot isogeny formulae, we can determine whether
A1 € E(p). If not, take another step ¢p: A1 — A.

Maria Corte-Real Santos (UCL) Efficient (N, N)-splitting detection ISOCRYPT 10/18



Attacking the General Isogeny Problem: First step

Summary: Using Richelot isogenies, Costello-Smith take walks in [(2;F,)

and detect (2,2)-splittings.

First step in more detail:
@ We start on a node Ay € J(p).
@ Take a step in ['(2; p) via a Richelot isogeny ¢1: Ay — A;.

© From the Richelot isogeny formulae, we can determine whether
A1 € E(p). If not, take another step ¢p: A1 — A.

O Repeat previous step until finding A; € £(p).
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Attacking the General Isogeny Problem: First step

Summary: Using Richelot isogenies, Costello-Smith take walks in [(2;F,)
and detect (2,2)-splittings.
First step in more detail:

@ We start on a node Ay € J(p).

@ Take a step in ['(2; p) via a Richelot isogeny ¢1: Ay — A;.

© From the Richelot isogeny formulae, we can determine whether
A1 € E(p). If not, take another step ¢p: A1 — A.

O Repeat previous step until finding A; € £(p).

Question: Taking steps in ['(2; p), can we detect whether the current
node A; is in (N, N)-split for N > 27?

Maria Corte-Real Santos (UCL) Efficient (N, N)-splitting detection ISOCRYPT 10/18



Attacking the General Isogeny Problem: First step

Summary: Using Richelot isogenies, Costello-Smith take walks in [(2;F,)
and detect (2,2)-splittings.
First step in more detail:

@ We start on a node Ay € J(p).

@ Take a step in ['(2; p) via a Richelot isogeny ¢1: Ay — A;.

© From the Richelot isogeny formulae, we can determine whether
A1 € E(p). If not, take another step ¢p: A1 — A.

O Repeat previous step until finding A; € £(p).

Question: Taking steps in ['(2; p), can we detect whether the current
node A; is in (N, N)-split for N > 27?

Naive Answer: Compute all (N, N)-isogenies from A;, but this is not
efficient. Can we make the detection efficient?
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Attacking the General Isogeny Problem: First step

Summary: Using Richelot isogenies, Costello-Smith take walks in [(2;F,)
and detect (2,2)-splittings.
First step in more detail:

@ We start on a node Ay € J(p).

@ Take a step in ['(2; p) via a Richelot isogeny ¢1: Ay — A;.

© From the Richelot isogeny formulae, we can determine whether
A1 € E(p). If not, take another step ¢p: A1 — A.

O Repeat previous step until finding A; € £(p).

Question: Taking steps in ['(2; p), can we detect whether the current
node A; is in (N, N)-split for N > 27?

Naive Answer: Compute all (N, N)-isogenies from A;, but this is not
efficient. Can we make the detection efficient? If so, we could improve the
concrete complexity of Costello-Smith attack.
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Detecting (N, N)-splittings

2
]
Genus 2 curves with = .
Ly~ { (N, N)-split Jacobians } / Fyris
P(2,4,6,10)

M =~ {Genus 2 curves} / Fp-iso
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Detecting (N, N)-splittings

only for small N (e.g., N < 13)

2
Ar,s
Ln Genus 2 curves with / Fiso
N (N, N)-split Jacobians P
given by Igusa—Clebsch invariants
P(2,4,6,10)

M =~ {Genus 2 curves} / Fp-iso
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Detecting (N, N)-splittings

2
A’r,s
Genus 2 curves with = .
@ e = { (¥ N it acoions } / Fr

PN

P(2,4,6,10)

M =~ {Genus 2 curves} / Fp-iso

Im pn
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Detecting (N, N)-splittings

T,8

Ln Genus 2 curves with / Fiso
N (N, N)-split Jacobians L4

Question: Is C (N, N)-split (over F,)?
o Answer: Yes <= [C] in Im ¢y

P(2, 4,6,10)
M =~ {Genus 2 curves} / Fp-iso

non-split
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Detecting (N, N)-splittings

2
A’r,s
Genus 2 curves with = .
@ e = { (¥ N it acoions } / Fr

‘ rExplicit (!) polynomials in r, s

PN Kugmr (IQ 14 ZIG ZI]()), for N é 11.

P(2,4,6,10)

M =~ {Genus 2 curves} / Fp-iso
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Detecting (N, N)-splittings

’ \N\
T,8

N
Kumar

Explicit (!) polynomials in r, s

P(2,4,6,10)

a

| ¢: Jac(C) - Ex E
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Detecting (N, N)-splittings

’ S<
.
T,8

‘We now discuss
how to find (7, s)

P(2,4,6,10)

a

| ¢: Jac(C) - Ex E
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Is C in the image?

We want to detect whether C is (N, N)-split, i.e., in the image of @y.
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Is C in the image?

We want to detect whether C is (N, N)-split, i.e., in the image of @y. Let
h(C), 14(C), Is(C), ho(C) be the lIgusa—Clebsch invariants of C.

Maria Corte-Real Santos (UCL) Efficient (N, N)-splitting detection ISOCRYPT 12/18



Is C in the image?

We want to detect whether C is (N, N)-split, i.e., in the image of @y. Let
h(C), 14(C), Is(C), ho(C) be the lIgusa—Clebsch invariants of C.

Method 1: Compute the equation Fp for the image of Ly
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Is C in the image?

We want to detect whether C is (N, N)-split, i.e., in the image of @y. Let
h(C), 14(C), Is(C), ho(C) be the lIgusa—Clebsch invariants of C.

Method 1: Compute the equation Fp for the image of Ly
e Jac(C) is (N, N)-split <= Fn(h(C), 14(C), Is(C), ho(C)) = 0.
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Is C in the image?

We want to detect whether C is (N, N)-split, i.e., in the image of @y. Let
h(C), 14(C), Is(C), ho(C) be the lIgusa—Clebsch invariants of C.

Method 1: Compute the equation Fp for the image of Ly
e Jac(C)is (N, N)-split <= Fn(h(C), 14(C), Is(C), ho(C)) = 0.
@ Computing Fp for 2 < N <5 has been done by Bruin—Doereksen
[BD11] and Shaska and others [Sha04, SWWW08, MSV09].
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Is C in the image?

We want to detect whether C is (N, N)-split, i.e., in the image of @y. Let
h(C), 14(C), Is(C), ho(C) be the lIgusa—Clebsch invariants of C.

Method 1: Compute the equation Fp for the image of Ly
e Jac(C)is (N, N)-split <= Fn(h(C), 14(C), Is(C), ho(C)) = 0.
@ Computing Fp for 2 < N <5 has been done by Bruin—Doereksen
[BD11] and Shaska and others [Sha04, SWWW08, MSV09].

@ The main problem is that Fy is large (with size growing rapidly with
N), so the evaluation is inefficient.
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Is C in the image?

For example, F3 is given by:

296119/} + 104960131} — 83174442114 + 27719681015  SOTS200I31]° + 552806415/} — ISBTBAOKII® + 128614412 11° 1066087 02161151 1) — 418000213 117/] + 2851430413 [[31] — 79534080I3}41] + 116035680115 — 058371841511}
+ 4158250213171} — TATLIOM 01} + 152064108 + FIRg RO + BIBE 2 il BAO 1 106168320  152064001° 313 — 8611790041111
- e 8 513 + 102643201181 + R i+ B~ 2
— 2aeareT20n - ssaTson [ + - ¢ ¢ i e+
- i+ a3 I + -
- N . + s - - -
+ 1360488961 1” - + B0ty + 'y + 1y o fy + Al
- fo+ o — 67744312013 15 1 — Bty Wi+ Bty Bily kil
+ PRty ~ 1 fo+ I, By fo Bl + h+ o
et L itk : e i 2y
Y N o . v Fo,
. i+ o+ o - o 2 - Wik Wy
G- i+ - i+ - gt B+
- - - +
. + - - -
- B -
i+ 21 i+ B i 3
- i sy o - + + iy
iy - +
- - - + 56181 + ity — iy
+ - ) ity
+ - + -
+ + -
. - + - -
+ + +
- - + +
i 6 -
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Is C in the image?

N|[Weighted degree of Fy Num.ber.of Average_b.itlength of the
monomials in Fy coefficients of Fp

2 30 34 ~ 16.6

3 80 318 ~ 64.3

4 180 2699 ~ 197

5 480 43410 ~ 617

Table: The number of monomials in the defining equation for the image of Ly in
P(2,4,6,10).
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Is C in the image?

Method 2: Computing resultants
We normalise the Igusa—Clebsh invariants h(C), l4(C), Is(C), ho(C) as:

~ 1s(C) ~ h(C)lu(C) N ~ 1(C)l6(C)
~ h(C)2 a2(C) = 5(C) 3(0) = ho(C)

Oél(C)
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Is C in the image?

Method 2: Computing resultants
We normalise the Igusa—Clebsh invariants h(C), l4(C), Is(C), ho(C) as:

1(C) h(C)la(C)

_ 1s(C)ls(C)
h(C)?’ Is(C)

Oél(C) /10(C)

Oé2(C) =

; a3(C) =

Kumar [Kum15] gives us the map

oN = <Iz(r,s) : Za(r,s) : Zo(r, s) :Ilo(r,s)>.
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Is C in the image?

Method 2: Computing resultants
We normalise the Igusa—Clebsh invariants h(C), l4(C), Is(C), ho(C) as:

la(C) h(C)ha(C) la(C)ls(C)

= hiop O =" @O =70

Oél(C)

Kumar [Kum15] gives us the map

oN = <Iz(r,s) : Za(r,s) : Zo(r, s) :Ilo(r,s)>.

We chose the same normalisation of the Z,(r,s) to give us i1(r,s), ia(r,s)
and i3(r, s).
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Is C in the image?

Method 2: Computing resultants
Suppose there exist a simultaneous solution rg, sp € ), of

fl(r,s) = i1(r0,so) — Ozl(C)
fg(r,s) = ig(r(),So) — Ozz(C)
f3(r,s) = i3(r0, 50) — a3(C)

such that the denominators of fj(r,s) do not vanish at (ry, sp). Then
Jac(C) is (N, N)-split.
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Is C in the image?

Method 2: Computing resultants B

Suppose there exist a simultaneous solution rg, sp € ), of
fl(r,s) = i1(r0,so) — Ozl(C)
fg(r,s) = ig(r(),So) — Ozz(C)
f3(r,s) = i3(ro, s0) — a3(C)

such that the denominators of fj(r,s) do not vanish at (ry, sp). Then
Jac(C) is (N, N)-split.

We determine if drp, sp by:
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Is C in the image?

Method 2: Computing resultants
Suppose there exist a simultaneous solution rg, sp € ), of

fl(r,s) = i1(r0,so) — Ozl(C)
fg(r,s) = ig(r(),So) — Ozz(C)
f3(r,s) = i3(r0, 50) — a3(C)

such that the denominators of fj(r,s) do not vanish at (ry, sp). Then

Jac(C) is (N, N)-split.
We determine if drp, sp by:

(1) Computing resultants of (the numerators of) fi(r,s), f2(r,s) and

f(r,s), f3(r,s) (with respect to r) to get resi(s), resa(s).
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Is C in the image?

Method 2: Computing resultants
Suppose there exist a simultaneous solution rg, sp € ), of

fl(r,s) = i1(r0,so) — Ozl(C)
fg(r,s) = ig(r(),So) — Ozz(C)
f3(r,s) = i3(r0, 50) — a3(C)

such that the denominators of fj(r,s) do not vanish at (ry, sp). Then

Jac(C) is (N, N)-split.
We determine if drp, sp by:

(1) Computing resultants of (the numerators of) fi(r,s), f2(r,s) and

f(r,s), f3(r,s) (with respect to r) to get resi(s), resa(s).

(2) Compute ged(resi(r), resa(r)).
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Is C in the image?

Method 2: Computing resultants
Suppose there exist a simultaneous solution rg, sp € ), of

fl(r,s) = i1(r0,so) — Ozl(C)
fg(r,s) = ig(r(),So) — Ozz(C)
f3(r,s) = i3(r0, 50) — a3(C)

such that the denominators of fj(r,s) do not vanish at (ry, sp). Then

Jac(C) is (N, N)-split.
We determine if drp, sp by:

(1) Computing resultants of (the numerators of) fi(r,s), f2(r,s) and

f(r,s), f3(r,s) (with respect to r) to get resi(s), resa(s).

(2) Compute ged(resi(r), resa(r)). If degree is 0, then Jac(C) is not

(N, N)-split.
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Is C in the image?

Method 2: Computing resultants
Suppose there exist a simultaneous solution rg, sp € ), of

f(r,s) = i(ro,50) — a1(C)

fa(r,s) = ia(ro, s0) — a2(C)

f3(r,s) = i3(ro, 50) — a3(C)
such that the denominators of fj(r,s) do not vanish at (ry, sp). Then
Jac(C) is (N, N)-split.
We determine if drp, sp by:

(1) Computing resultants of (the numerators of) fi(r,s), f2(r,s) and
f(r,s), f3(r,s) (with respect to r) to get resi(s), resa(s).

(2) Compute ged(resi(r), resa(r)). If degree is 0, then Jac(C) is not
(N, N)-split. Otherwise, Jac(C) is (N, N)-split and rp is a root of the
GCD. Then solve for sp.

This method is more efficient (and requires less memory).
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Is C in the image?

Method 2: Computing resultants
Suppose there exist a simultaneous solution rg, sp € ), of

fl(r,s) = i1(r0,so) — Ozl(C)
fg(r,s) = ig(r(),So) — Ozz(C)
f3(r,s) = i3(r0, 50) — a3(C)

such that the denominators of fj(r,s) do not vanish at (ry, sp). Then

Jac(C) is (N, N)-split.

We determine if drp, sp by:

(1) Computing resultants of (the numerators of) fi(r,s), f2(r,s) and

f(r,s), f3(r,s) (with respect to r) to get resi(s), resa(s).

(2) Compute ged(resi(r), resa(r)). If degree is 0, then Jac(C) is not

(N, N)-split. Otherwise, Jac(C) is (N, N)-split and rp is a root of the

GCD. Then solve for sp.

This method is more efficient (and requires less memory). In fact, we

obtain a more efficient method by precomputing the resultants generically.
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

Q O O 1) Precomputation: determine the set of D
C N’s for which we detect (I, N)-splittings.
O O O We do this by finding 2 < N < 11 that minimise

O number of F, multiplications
O number of nodes revealed and inspected O

500 OOQOO o ©
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

For this example O
O 0 O |ye take N = {2,3,5}

O OO0 O ¥ 0
0.0 05508 0 16°
0O~0 O O~ ~O
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

O
O OOOO O 2) Take a step
in I'3(2; p)
o 0 L0075 Y
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

O O O
o~ 00
050 700 0N 00
O O O 4)Efficient (N, N)-splitting
O~0~0 . O
O @ O O] dectionfor N e (23,5}
O Q QO QO C, O O Q
000 0a2 0202 00
O5o0Y0 07900

093 000" 00
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

N=2

O O O O 14 nodes checked
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

N=3
40* nodes checked
/
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

Lo N=5
O .'I Q_E?’/O_\ 156* nodes checked
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

O OCo
o 00O
(:> (:) (:> (:) <:> <:> <§§> <:>(:> <:> (:) <:§i:>
050 700 0n 0a®
O O O O 5) Take a step @)
CpO )
09 00 o5
o O O_ 0
0 005005 © Lo°
©50°0 06r°%0°
O QOQQO O O
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

o
0% o
50
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm

and decreasing its concrete complexity.

@ Co
o 0O
0% 00 ¢ OgOOOO o°
000 0 0 0N 00
O O O O OO 6) Repegt ‘untill a )
O ®) O O (N, N)-splitting is found
020 0200%0,° 00
5 0°0 0~ 00
O o 000  © O
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Preliminary Experiments

We implemented and optimised the first step of Costello-Smith attack
with and without detection of (N, N)-spliting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10® F, multiplications.
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Preliminary Experiments

We implemented and optimised the first step of Costello-Smith attack
with and without detection of (N, N)-spliting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10® F, multiplications. We counted
the number of nodes revealed and IF, multiplications per node revealed.
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Preliminary Experiments

We implemented and optimised the first step of Costello-Smith attack

with and without detection of (N, N)-spliting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10® F, multiplications. We counted

the number of nodes revealed and IF, multiplications per node revealed.

Walks in I2(2; p) Walks in I'2(2; p)
without additional searching|w. split searching in '2(N; p)
[CS20] This work
prime bits |nodes per| muls per set nodes per|muls per|imprv.
p p | 108 muls node N € {...}| 108 muls| node |factor
211324 1] 50 | 172712 579 {2,3} [2830951| 35 |16.5
227377 _ 11150 | 63492 1575 {3,4} |1858912| 54 |29.2
2181 .343 _1)250 | 34083 2934 {4,6} |1771608| 56 | 52.4
2113324 _1)500 | 20239 4941 {4,6} |1667360 60 82.4
21073437 _ 11800 | 13228 7560 {4,6} |1548504| 65 |116.3
2721.3176 _ 111000, 8814 11346 {4,6} |1403752| 71 |159.8
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Preliminary Experiments

We implemented and optimised the first step of Costello-Smith attack

with and without detection of (N, N)-spliting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10® F, multiplications. We counted

the number of nodes revealed and IF, multiplications per node revealed.

Walks in I2(2; p) Walks in I'2(2; p)
without additional searching|w. split searching in '2(N; p)
[CS20] This work
prime bits |nodes per| muls per set nodes per|muls per|imprv.
p p | 108 muls node N € {...}| 108 muls| node |factor
211324 1] 50 | 172712 579 {2,3} [2830951| 35 |16.5
227377 _ 11150 | 63492 1575 {3,4} |1858912| 54 |29.2
2181 .343 _1)250 | 34083 2934 {4,6} |1771608| 56 | 52.4
2113324 _1)500 | 20239 4941 {4,6} |1667360 60 82.4
21073437 _ 11800 | 13228 7560 {4,6} |1548504| 65 |116.3
27213176 _ 11000/ 8814 11346 {4,6} |1403752| 71 |159.8
Any questions?
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