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The Supersingular Isogeny Problem

In its most general form, the supersingular isogeny problem asks to find an
isogeny

φ : E1 → E2,

between two given supersingular elliptic curves E1/Fp2 and E2/Fp2 .

The best known classical attack against this general problem is the
Delfs–Galbraith algorithm.
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Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of
B-SIDH, SQISign (soundness), etc.

So, determining the concrete
complexity of Delfs–Galbraith is important for the potential
standardisation of these schemes.

Our contributions:

Provide an optimised implementation of the Delfs–Galbraith
algorithm: Solver.

Develop an efficient method to detect if a polynomial f (X ) ∈ Fpd [X ]
has a root in Fp.

Use this to introduce an improved attack, SuperSolver, with lower
concrete complexity.
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The Supersingular Isogeny Graph X (F̄p, `)

Let p be a large prime, p 6 | `.

Vertices: F̄p-isomorphism classes of supersingular elliptic curves E over
F̄p. These classes are represented by curves defined over Fp2 and are
represented by a j-invariant in Fp2 .

Edges: `-isogenies defined over F̄p.

Properties:

There are ≈ p
12 vertices: this is the number of supersingular

j-invariants (in Fp2).

(`+ 1)-regular: one outgoing edge for each of the `+ 1 cyclic
subgroups of E [`].

Connected with diameter O(log p).

Ramanujan graph: rapid mixing.
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Key Observation
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The Delfs–Galbraith Algorithm
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Modular Polynomial

The modular polynomial (of level `) Φ`(X ,Y ) ∈ Z[X ,Y ] parameterizes
pairs of `-isogenous elliptic curves in terms of their j-invariants.

It is:

symmetric in X and Y

of degree N` in both X and Y , where

N` :=
n∏

i=1

(`i + 1)`ei−1i , for prime decomposition
n∏

i=1

`eii of `.

N` = `+ 1 for ` prime.

Φ`(j1, j2) = 0 ⇐⇒ j1, j2 are j-invariants of `-isogenous elliptic curves.

This tells us that the roots of Φ`,p(X , j) are neighbours of j in X (Fp, `).
Reducing coefficients modp we can work with Φ`,p(X ,Y ) ∈ Fp[X ,Y ].
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Taking a step in X (F̄p, `)

Taking a self-avoiding step in X (F̄p, `):
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Concrete Complexity of Delfs–Galbraith

Solver is an optimised implementation of the Delfs–Galbraith algorithm
with ` = 2.

Why ` = 2? Taking a step in X (Fp, 2) means computing a square
root.

We use Solver to find the concrete complexity of Delfs–Galbraith.

Experimentally, given a node j ∈ Fp2\Fp, the average number of Fp

multiplications needed to find a path to a node j ′ ∈ Fp is

c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05.
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Overview

SuperSolver is a new attack that improves on the concrete complexity of
the Delfs–Galbraith algorithm.

It changes the first step: the subfield
search.

At each step, we want to know if the current node jc is `-isogenous to a
j ∈ Fp.

Key Observation

At each step, the precise values of the `-isogenous neighbours do not need
to be known, only whether it lies in Fp.
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Overview

At each step of the random walk in X (F̄p, 2), SuperSolver inspects the
`-isogeny graph with fast subfield root detection for ` in a carefully chosen
set, to efficiently detect whether jc has an `-isogenous neighbour in Fp.
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Fast Subfield Root Detection

Recall to take a step in X (F̄p, `) we find the roots of

Φ`,p(X , jc) ∈ Fp2 [X ].

We want a fast way of detecting whether it has a root in Fp without
finding roots.

Lemma

Let π be the p-power Frobenius map and f a polynomial in Fp2 [X ]. Then,
gcd(f , π(f )) is the largest divisor of f defined over Fp.
In particular, if

deg
(

gcd(f , π(f ))
)

=

{
1, f has a root in Fp

0, f does not have a root in Fp

.
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Fast Subfield Root Detection

Problem: In general f , π(f ) ∈ Fp2 [X ] and we want to avoid costly
multiplications in Fp2 .
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Fast Subfield Root Detection

Problem: In general f , π(f ) ∈ Fp2 [X ] and we want to avoid costly
multiplications in Fp2 .

Observation

For polynomials f1, f2 ∈ Fp2 [X ], if

g1 = af1 + bf2, and g2 = cf1 + df2,

with a, b, c , d ∈ Fp2 such that ad − bc 6= 0 with we have

gcd(f1, f2) = gcd(g1, g2).
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Fast Subfield Root Detection

Problem: In general f , π(f ) ∈ Fp2 [X ] and we want to avoid costly
multiplications in Fp2 .

Solution: Let α ∈ Fp2 be such that Fp2 = Fp(α). For
f (X ) := Φ`,p(X , jc), if

g1 =
1

2

(
f + π(f )

)
, and g2 =

α

2

(
f − π(f )

)
,

then g1, g2 ∈ Fp[X ] and gcd(f , π(f )) = gcd(g1, g2).
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Fast Subfield Root Detection

Problem: In general f , π(f ) ∈ Fp2 [X ] and we want to avoid costly
multiplications in Fp2 .

Solution: Let α ∈ Fp2 be such that Fp2 = Fp(α). For
f (X ) := Φ`,p(X , jc), if

g1 =
1

2

(
f + π(f )

)
, and g2 =

α

2

(
f − π(f )

)
,

then g1, g2 ∈ Fp[X ] and gcd(f , π(f )) = gcd(g1, g2).

We can avoid all multiplications over Fp2 : if we write the coefficients of

f (X ) as a
(1)
k + a

(2)
k α (say α2 = −1), then

g1(X ) =
n∑

k=0

a
(1)
k X k , and g2(X ) =

n∑
k=0

a
(2)
k X k .
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List of Optimal `’s

Though the inspection of the neighbours of jc in the `-isogeny graph
increases the total number of Fp multiplications at each step, more nodes
are checked.
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List of Optimal `’s

Though the inspection of the neighbours of jc in the `-isogeny graph
increases the total number of Fp multiplications at each step, more nodes
are checked.

We want to compute a list of `’s that minimise #Fp multiplications per
node inspected.

1 Determine the cost per node revealed of taking a step in the
2-isogeny graph: cost2

2 Determine the cost per node inspected in the `-isogeny graph: cost`.

3 Determine a list L = [`1, . . . , `n] of `i > 2 with cost` < cost2
4 Find the subset of L that minimises the total cost of each step:

cost =
total # of Fp multiplications

total # of nodes revealed
.
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List of Optimal `’s

Though the inspection of the neighbours of jc in the `-isogeny graph
increases the total number of Fp multiplications at each step, more nodes
are checked.

We want to compute a list of `’s that minimise #Fp multiplications per
node inspected.

1 Determine the cost per node revealed of taking a step in the
2-isogeny graph: cost2

2 Determine the cost per node inspected in the `-isogeny graph: cost`.
3 Determine a list L = [`1, . . . , `n] of `i > 2 with cost` < cost2
4 Find the subset of L that minimises the total cost of each step:

cost =
total # of Fp multiplications

total # of nodes revealed
.

Calculating the list of optimal `’s can be done in precomputation.
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Outline
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Worked Example: Precomputation

Let p = 220 − 3.

Construct the extension field Fp2 = Fp(α), where α2 is the first
non-square in −1,−2, 2,−3, 3, . . . .

Reduces the coefficients of Φ`(X ,Y ) ∈ Z[X ,Y ] mod p to obtain
Φ`,p(X ,Y ) ∈ Fp[X ,Y ].

For SuperSolver, compute a list of optimal `’s L.
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Worked Example: Precomputation

Let p = 220 − 3.

Construct the extension field Fp2 = Fp(α), where α2 is the first
non-square in −1,−2, 2,−3, 3, . . . .

Reduces the coefficients of Φ`(X ,Y ) ∈ Z[X ,Y ] mod p to obtain
Φ`,p(X ,Y ) ∈ Fp[X ,Y ].

For SuperSolver, compute a list of optimal `’s L.

Sample our start and end node:

Start Node: j1 = 129007α + 818380

End Node: j2 = 97589α + 660383
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Worked Example: Solver

Path from j1 = 129007α + 818380 to subfield node.
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Worked Example: Solver

Path from j1 = 129007α + 818380 to subfield node j ′1 = 760776.
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Worked Example: Solver

Path from j2 = 97589α + 660383 to subfield node.
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Worked Example: Solver

Path from j2 = 97589α + 660383 to subfield node j ′2 = 35387.
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Worked Example: Solver

Path between subfield nodes j ′1 = 760776 and j ′2 = 35387.

We take steps in X (F̄p, `) with ` ∈ {17, 29, 31, 37}.
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Worked Example: Solver

Path between subfield nodes j ′1 = 760776 and j ′2 = 35387.

We take steps in X (F̄p, `) with ` ∈ {17, 29, 31, 37}.

In total, the path has 21 + 21 + 8 = 50 steps.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
Path from j2 = 97589α + 660383 to subfield node j ′2 = 292917.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
Path between subfield nodes j ′1 = 35387 and j ′2 = 292917.

We take steps in X (F̄p, `) with ` ∈ {17, 29, 31, 37}.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
Path between subfield nodes j ′1 = 35387 and j ′2 = 292917.

We take steps in X (F̄p, `) with ` ∈ {17, 29, 31, 37}.

In total, the path has 3 + 3 + 5 = 11 steps.
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Outline

1 The Supersingular Isogeny Problem

2 The Delfs–Galbraith Algorithm

3 SuperSolver: Accelerating Delfs–Galbraith’s Algorithm

4 Worked Example

5 Results and Conclusions
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Results

Experiments on small primes and many j-invariants.

SuperSolver finds
a subfield node with much fewer (on average, half) Fp multiplications and
by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of Fp multiplications used
exceeded 108, recording the total number of nodes covered.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds
a subfield node with much fewer (on average, half) Fp multiplications and
by visiting less nodes.

Example: For p = 224 − 3, averaging over 5000 pseudo-random
supersingular j-invarants in Fp2 , we get:

Solver used 112878 Fp multiplications and walked on 1897 nodes.

SuperSolver used 53900 Fp multiplications and walked on 318 nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of Fp multiplications used
exceeded 108, recording the total number of nodes covered.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds
a subfield node with much fewer (on average, half) Fp multiplications and
by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of Fp multiplications used
exceeded 108, recording the total number of nodes covered.

Examples:

For p = 250 − 27, SuperSolver covers between 3 and 4 times the
number of nodes that Solver does.

For p = 2800 − 105, SuperSolver covers between 18 and 19 times the
number of nodes.
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Conclusions

What does this mean for isogeny-based cryptography?

We improve the concrete complexity of Delfs–Galbraith - asymptotic
complexity is unchanged.

No direct impact on SIDH and SIKE - there are faster claw-finding
algorithms.

Affects other proposals, such as B-SIDH and SQISign, with
Delfs–Galbraith as their best attack.
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Open Problems

Relating to SuperSolver:

Can we combine Φm(X , j) and Φn(X , j) so that we can detect
whether j has an nm-isogenous neighbour doing operations with Φm

and Φn only?

What does a quantum version of SuperSolver look like?

Other applications of subfield detection
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