
Finding Practical Parameters for
Isogeny-based Cryptography
Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael
Meyer, Francisco Rodríguez-Henríquez

ENS de Lyon, CNRSUniversity College London

Motivation

We are motivated by post-quantum cryptography built from isogenies
between elliptic curves defined over .

For the efficient computation of isogenies over , protocols often have
special requirements on .

𝔽p2

𝔽p2

p

Motivation

We are motivated by post-quantum cryptography built from isogenies
between elliptic curves defined over .

For the efficient computation of isogenies over , protocols often have
special requirements on .

𝔽p2

𝔽p2

p

Cryptographic sized primes such that is (sufficiently) smooth.p p2 − 1

Motivation

We are motivated by post-quantum cryptography built from isogenies
between elliptic curves defined over .

For the efficient computation of isogenies over , protocols often have
special requirements on .

𝔽p2

𝔽p2

p

Cryptographic sized primes such that is (sufficiently) smooth.p p2 − 1

Why?
Factors of correspond to degrees of isogenies computable over .p2 − 1 𝔽p2

Twin Smooth Integers
Definition:
For an integer , we say that a pair of consecutive integers are -smooth twins if
their product is -smooth.

B (r, r + 1) B
r(r + 1) B

Twin Smooth Integers
Definition:
For an integer , we say that a pair of consecutive integers are -smooth twins if
their product is -smooth.

B (r, r + 1) B
r(r + 1) B

For example, the following are -smooth twins:100

166055401586083680 = 25 ⋅ 33 ⋅ 5 ⋅ 113 ⋅ 23 ⋅ 43 ⋅ 59 ⋅ 67 ⋅ 83 ⋅ 89
166055401586083681 = 72 ⋅ 1710 ⋅ 412

Twin Smooth Integers
Definition:
For an integer , we say that a pair of consecutive integers are -smooth twins if
their product is -smooth.

B (r, r + 1) B
r(r + 1) B

For example, the following are -smooth twins:100

166055401586083680 = 25 ⋅ 33 ⋅ 5 ⋅ 113 ⋅ 23 ⋅ 43 ⋅ 59 ⋅ 67 ⋅ 83 ⋅ 89
166055401586083681 = 72 ⋅ 1710 ⋅ 412

Remark:
If is prime, then is -smooth!p = 2r + 1 p2 − 1 = 4r(r + 1) B

A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny
Diffie-Hellman using twisted torsion

A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny
Diffie-Hellman using twisted torsion

Costello, Meyer, Naehrig (EUROCRYPT 2021)

Sieving for twin smooth integers with solutions
to the Prouhet—Tarry—Escott Problem

A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny
Diffie-Hellman using twisted torsion

Costello, Meyer, Naehrig (EUROCRYPT 2021)

Sieving for twin smooth integers with solutions
to the Prouhet—Tarry—Escott Problem

De Feo, Kohel, Leroux, Petit, Wesolowski (2020)
SQIsign

De Feo, Leroux, Longa, Wesolowski (2022)

Relaxing the problem
In SQIsign, we don’t need to be fully smooth.p2 − 1

Requirements:

Other more recent schemes also have this more relaxed requirement (AprèsSQI,
POKE, …).

with odd and is large.

We also need a large power of : such that

T ≈ p5/4+ϵ f

3 3f′ ∣ p + 1 2f3f′ ≥ 2λ

, log(p) ≈ 256, 384, 512 p ≡ 3 mod 4

 is a -smooth cofactor 2fT ∣ p2 − 1 B

Relaxing the problem
In SQIsign, we don’t need to be fully smooth.p2 − 1

Requirements:

Other more recent schemes also have this more relaxed requirement (AprèsSQI,
POKE, …).

with and is large.

We also need a large power of : such that

T ≈ p5/4+ϵ f

3 3f′ ∣ p + 1 2f3f′ ≥ 2λ

, log(p) ≈ 256, 384, 512 p ≡ 3 mod 4

 is a -smooth cofactor 2fT ∣ p2 − 1 Bsigning

verification

challenge

A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny
Diffie-Hellman using twisted torsion

Costello, Meyer, Naehrig (EUROCRYPT 2021)

Sieving for twin smooth integers with solutions
to the Prouhet—Tarry—Escott Problem

De Feo, Kohel, Leroux, Petit, Wesolowski (2020)
SQIsign

Cryptographic Smooth Neighbors
Bruno, CRS., Costello, Eriksen, Meyer, Naehrig,

Sterner (ASIACRYPT 2023)

De Feo, Leroux, Longa, Wesolowski (2022)

A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny
Diffie-Hellman using twisted torsion

Costello, Meyer, Naehrig (EUROCRYPT 2021)

Sieving for twin smooth integers with solutions
to the Prouhet—Tarry—Escott Problem

De Feo, Kohel, Leroux, Petit, Wesolowski (2020)
SQIsign

Cryptographic Smooth Neighbors
Bruno, CRS., Costello, Eriksen, Meyer, Naehrig,

Sterner (ASIACRYPT 2023)

De Feo, Leroux, Longa, Wesolowski (2022)

Towards Optimally Small Smoothness Bounds for
Cryptographic-Sized Twin Smooth Integers and

their Isogeny-based Applications
Sterner (SAC 2024)

Landscape for finding twins

Constructive Probabilistic

XGCD/CRT

Cyclotomic factors

Pell equations

Sieving + PTE Solutions

The CHM algorithm

XGCD over ℚ[x]

Landscape for finding twins

Constructive Probabilistic

XGCD/CRT

Cyclotomic factors

Pell equations

Sieving + PTE Solutions

The CHM algorithm

XGCD over ℚ[x]

A deeper look at constructive methods
Pell equations

- a -smooth twin

- , so that is -smooth

- Let where are -smooth and is square free

- Then is a solution to the Pell conic

(r, r + 1) B
x := 2r + 1 x2 − 1 B

x2 − 1 = Dy2 D, y B D
(x, y)

X2 − DY2 = 1

A deeper look at constructive methods
Pell equations

- a -smooth twin

- , so that is -smooth

- Let where are -smooth and is square free

- Then is a solution to the Pell conic

(r, r + 1) B
x := 2r + 1 x2 − 1 B

x2 − 1 = Dy2 D, y B D
(x, y)

X2 − DY2 = 1

So, solving all Pell equations will find the complete set of -smooth twins.2π(B) B

A deeper look at constructive methods
Pell equations

- a -smooth twin

- , so that is -smooth

- Let where are -smooth and is square free

- Then is a solution to the Pell conic

(r, r + 1) B
x := 2r + 1 x2 − 1 B

x2 − 1 = Dy2 D, y B D
(x, y)

X2 − DY2 = 1

So, solving all Pell equations will find the complete set of -smooth twins.2π(B) B

Example: with the largest twins found by solving all Pell
equations have

B = 113 (r, r + 1) 230

r = 19316158377073923834000 ≈ 275

A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth
twins:

B

- Let representing -smooth twins

- For each with compute
S(0) = {1,2,…B − 1} B (1,2), (2,3), …, (B − 1,B)

r, s ∈ S(0) r < s
t
t′

=
r

r + 1
⋅

s + 1
s

 with gcd(t, t′) = 1

- Let

- Repeat with instead of

- Terminate when for some

S(1) = S(0) ∪ {new solutions t ∣ t′ = t + 1}
S(1) S(0)

S(d+1) = S(d) d

A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth
twins:

B

Example: Let’s illustrate for . Starting set is .B = 5 S(0) = {1,2,3,4}
We have that

2
2 + 1

⋅
3 + 1

3
=

8
9

,
2

2 + 1
⋅

4 + 1
4

=
5
6

,
3

3 + 1
⋅

4 + 1
4

=
15
16

So we add to get 5,8, and 15
S(1) = {1,2,3,4,5,8,15} .

After second and third CHM iterations we get

S(2) = {1,2,3,4,5,8,15,24} and S(3) = {1,2,3,4,5,8,15,24,80}

We get so we terminate. Indeed this is the full set of -smooth integers.S(3) = S(4) 5

A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth
twins:

B

- Luca and Najman (2011) computed the full set of 13,374 twin smooths for in
15 days by solving Pell equations.

- Running the CHM algorithm we find 13,333 of these twins in 20 minutes.

B = 100
225

A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth
twins:

B

- Luca and Najman (2011) computed the full set of 13,374 twin smooths for in
15 days by solving Pell equations.

- Running the CHM algorithm we find 13,333 of these twins in 20 minutes.

B = 100
225

- The largest run for the Pell equation approach was for . B = 113

A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth
twins:

B

- Luca and Najman (2011) computed the full set of 13,374 twin smooths for in
15 days by solving Pell equations.

- Running the CHM algorithm we find 13,333 of these twins in 20 minutes.

B = 100
225

- The largest run for the Pell equation approach was for .

- CHM ran their algorithm for in about 2 weeks to find 346,192 twin smooths,
the largest of which were the 79-bit integers:

B = 113
B = 200

589864439608716991201560 = 23 ⋅ 33 ⋅ 5 ⋅ 72 ⋅ 112 ⋅ 17 ⋅ 31 ⋅ 592 ⋅ 83 ⋅ 1392 ⋅ 173 ⋅ 181

589864439608716991201561 = 132 ⋅ 1132 ⋅ 1272 ⋅ 1372 ⋅ 1512 ⋅ 1992

A deeper look at constructive methods

Conrey, Holmstrom and McLaughlin (2012) algorithm

[BCC+23] optimised the CHM algorithm and ran it for to get 82,026,426 twin
pairs, the largest of which are the 122-bit pair

B = 547

r = 54 ⋅ 7 ⋅ 132 ⋅ 172 ⋅ 19 ⋅ 29 ⋅ 41 ⋅ 109 ⋅ 163 ⋅ 173 ⋅ 239 ⋅ 2412 ⋅ 271 ⋅ 283 ⋅ 499 ⋅ 509

r + 1 = 28 ⋅ 32 ⋅ 312 ⋅ 432 ⋅ 472 ⋅ 832 ⋅ 1032 ⋅ 3112 ⋅ 4792 ⋅ 5232

A deeper look at probabilistic methods
XGCD method

as + bt = 1.

To generate a pair :

1. Choose two -smooth numbers with .

2. Run XGCD algorithm to find integers with ,

such that

3. If have large enough smooth factors, we set
where .

(r, r + 1)
B a, b ≈ 2λ gcd(a, b) = 1

s, t |s | < |b/2 | | t | < |a/2 |

s, t (r, r + 1) = (|as | , |bt |)
r ≈ 22λ

A deeper look at probabilistic methods
XGCD method

Why does this work? The product of two numbers of 2 numbers of size
 is much more likely to be smooth than a random integer of size .

s ⋅ t
≈ 2λ ≈ 22λ

Dickman—de Bruijn function

as + bt = 1.

To generate a pair :

1. Choose two -smooth numbers with .

2. Run XGCD algorithm to find integers with ,

such that

3. If have large enough smooth factors, we set
where .

(r, r + 1)
B a, b ≈ 2λ gcd(a, b) = 1

s, t |s | < |b/2 | | t | < |a/2 |

s, t (r, r + 1) = (|as | , |bt |)
r ≈ 22λ

A deeper look at probabilistic methods
Cyclotomic factors
Costello (2019) noticed that a lot of twins found with Pell equations were of the
form .(x2 − 1,x2)

Let’s consider twins of the form for even . (xn − 1, xn) n

Why does this work? The polynomial splits into cyclotomic factors.xn − 1

A deeper look at probabilistic methods
Cyclotomic factors
Costello (2019) noticed that a lot of twins found with Pell equations were of the
form .(x2 − 1,x2)

Let’s consider twins of the form for even . (xn − 1, xn) n

Why does this work? The polynomial splits into cyclotomic factors.xn − 1
Example: x4 − 1 = (x − 1)(x + 1)(x2 + 1)

 are all smoothℓ − 1, ℓ + 1, ℓ2 + 1,
So we just need to find an integer such that ℓ

A deeper look at probabilistic methods
Cyclotomic factors
Costello (2019) noticed that a lot of twins found with Pell equations were of the
form .(x2 − 1,x2)

Let’s consider twins of the form for even . (xn − 1, xn) n

Why does this work? The polynomial splits into cyclotomic factors.xn − 1
Example: x4 − 1 = (x − 1)(x + 1)(x2 + 1)

 are all smoothℓ − 1, ℓ + 1, ℓ2 + 1,
So we just need to find an integer such that ℓ

The larger the degree of the factors, the larger the smoothness bound
PTE solutions [CMN21]

The boosting method
These methods don’t scale well to higher security levels. In [BCC+23] we
introduce a method to use cyclotomic factors to boost twin smooths.

The boosting method
These methods don’t scale well to higher security levels. In [BCC+23] we
introduce a method to use cyclotomic factors to boost twin smooths.

Example:
Letting , then is smooth too. Setting we have
x = r + 1 x − 1 = r p = 2xn − 1

Let be -bit smooth twins.(r, r + 1) b

 and for even
p2 − 1 = 4xn(xn − 1) x − 1 ∣ xn − 1 n
-bits of guaranteed smoothness((n + 1)b + 2)

The boosting method
These methods don’t scale well to higher security levels. In [BCC+23] we
introduce a method to use cyclotomic factors to boost twin smooths.

Example:
Letting , then is smooth too. Setting we have
x = r + 1 x − 1 = r p = 2xn − 1

Let be -bit smooth twins.(r, r + 1) b

 and for even
p2 − 1 = 4xn(xn − 1) x − 1 ∣ xn − 1 n
-bits of guaranteed smoothness((n + 1)b + 2)

Take and we have bits of guaranteed smoothness.
b =
log(p) − 1

n
n + 1

n
(log(p) − 1) + 2

The boosting method
These methods don’t scale well to higher security levels. In [BCC+23] we
introduce a method to use cyclotomic factors to boost twin smooths.

Example:

In [BCC+23], CHM twins were used as inputs (for optimal smoothness bounds).
In this work, we use different inputs.

Letting , then is smooth too. Setting we have
x = r + 1 x − 1 = r p = 2xn − 1
Let be -bit smooth twins.(r, r + 1) b

 and for even
p2 − 1 = 4xn(xn − 1) x − 1 ∣ xn − 1 n
-bits of guaranteed smoothness((n + 1)b + 2)

Take and we have bits of guaranteed smoothness.
b =
log(p) − 1

n
n + 1

n
(log(p) − 1) + 2

A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny
Diffie-Hellman using twisted torsion

Costello, Meyer, Naehrig (EUROCRYPT 2021)

Sieving for twin smooth integers with solutions
to the Prouhet—Tarry—Escott Problem

De Feo, Kohel, Leroux, Petit, Wesolowski (2020)
SQIsign

Cryptographic Smooth Neighbors
Bruno, CRS., Costello, Eriksen, Meyer, Naehrig,

Sterner (ASIACRYPT 2023)

De Feo, Leroux, Longa, Wesolowski (2022)

Towards Optimally Small Smoothness Bounds for
Cryptographic-Sized Twin Smooth Integers and

their Isogeny-based Applications
Sterner (SAC 2024)

Finding Practical Parameters for
Isogeny-based Cryptography

CRS., Eriksen, Meyer, Rodríguez-Henríquez
(CiC 2024)

Combining methods

XGCD

Sieving

Boosting

Then we score primes against a cost metric.

Parameters for SQIsign: NIST-I
Previous work p = p3923 with log(p) = 253.7 and

T = 365 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 292 ⋅ 372 ⋅ 43 ⋅ 47 ⋅ 79 ⋅ 157 ⋅ 197 ⋅ 239
⋅ 263 ⋅ 271 ⋅ 281 ⋅ 283 ⋅ 307 ⋅ 461 ⋅ 521 ⋅ 563 ⋅ 599 ⋅ 607 ⋅ 619 ⋅ 743
⋅ 827 ⋅ 941 ⋅ 2357 ⋅ 3923

f = 65

Cost: 2.16

[DLLW23]

Parameters for SQIsign: NIST-I

This work

Previous work

p = pI
1973 with log(p) = 253.7 and

Cost: 2.01

p = p3923 with log(p) = 253.7 and

T = 365 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 292 ⋅ 372 ⋅ 43 ⋅ 47 ⋅ 79 ⋅ 157 ⋅ 197 ⋅ 239
⋅ 263 ⋅ 271 ⋅ 281 ⋅ 283 ⋅ 307 ⋅ 461 ⋅ 521 ⋅ 563 ⋅ 599 ⋅ 607 ⋅ 619 ⋅ 743
⋅ 827 ⋅ 941 ⋅ 2357 ⋅ 3923

f = 65

T = 336 ⋅ 74 ⋅ 11 ⋅ 13 ⋅ 232 ⋅ 37 ⋅ 592 ⋅ 89 ⋅ 97 ⋅ 1012 ⋅ 107 ⋅ 1092 ⋅ 131 ⋅ 137
f = 75

⋅ 1972 ⋅ 223 ⋅ 239 ⋅ 383 ⋅ 389 ⋅ 4912 ⋅ 499 ⋅ 607 ⋅ 7432 ⋅ 1033 ⋅ 1049
⋅ 1193 ⋅ 19132 ⋅ 1973

Cost: 2.16

[DLLW23]

+ larger power-of- for verification 2

Parameters for SQIsign: NIST-III
Previous work p = p10243 with log(p) = 381.2 and

T = 36 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 17 ⋅ 19 ⋅ 2312 ⋅ 47 ⋅ 71 ⋅ 79 ⋅ 1076 ⋅ 109 ⋅ 1276 ⋅ 149 ⋅ 229
⋅ 269 ⋅ 283 ⋅ 3076 ⋅ 349 ⋅ 4016 ⋅ 449 ⋅ 463 ⋅ 5476 ⋅ 1019 ⋅ 1033 ⋅ 1657
⋅ 2179 ⋅ 2293 ⋅ 4099 ⋅ 5119 ⋅ 10243

f = 79

Cost: 6.08

[BCC+23]

Parameters for SQIsign: NIST-III

This work

Previous work p = p10243 with log(p) = 381.2 and

T = 36 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 17 ⋅ 19 ⋅ 2312 ⋅ 47 ⋅ 71 ⋅ 79 ⋅ 1076 ⋅ 109 ⋅ 1276 ⋅ 149 ⋅ 229
⋅ 269 ⋅ 283 ⋅ 3076 ⋅ 349 ⋅ 4016 ⋅ 449 ⋅ 463 ⋅ 5476 ⋅ 1019 ⋅ 1033 ⋅ 1657
⋅ 2179 ⋅ 2293 ⋅ 4099 ⋅ 5119 ⋅ 10243

f = 79

Cost: 6.08

[BCC+23]

p = pIII
47441 with log(p) = 377.9 and

Cost: 5.67

T = 368 ⋅ 5 ⋅ 712 ⋅ 114 ⋅ 13 ⋅ 474 ⋅ 89 ⋅ 113 ⋅ 1574 ⋅ 173 ⋅ 233 ⋅ 239 ⋅ 241 ⋅ 443
f = 97

⋅ 5094 ⋅ 569 ⋅ 7614 ⋅ 1229 ⋅ 2393 ⋅ 3371 ⋅ 4517 ⋅ 5147 ⋅ 5693 ⋅ 5813
⋅ 9397 ⋅ 26777 ⋅ 39679 ⋅ 47441

+ larger power-of- for verification 2

Parameters for SQIsign: NIST-V
Previous work [BCC+23]p = p150151 with log(p) = 507.8 and

T = 32 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 1712 ⋅ 232 ⋅ 29 ⋅ 376 ⋅ 596 ⋅ 976 ⋅ 127 ⋅ 163 ⋅ 173 ⋅ 191
⋅ 193 ⋅ 211 ⋅ 2336 ⋅ 277 ⋅ 31112 ⋅ 9116 ⋅ 347 ⋅ 617 ⋅ 661 ⋅ 761 ⋅ 1039
⋅ 12976 ⋅ 4637 ⋅ 5821 ⋅ 15649 ⋅ 19139 ⋅ 143443 ⋅ 150151

f = 85

Cost: 17.05

Parameters for SQIsign: NIST-V

This work

Previous work [BCC+23]p = p150151 with log(p) = 507.8 and

T = 32 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 1712 ⋅ 232 ⋅ 29 ⋅ 376 ⋅ 596 ⋅ 976 ⋅ 127 ⋅ 163 ⋅ 173 ⋅ 191
⋅ 193 ⋅ 211 ⋅ 2336 ⋅ 277 ⋅ 31112 ⋅ 9116 ⋅ 347 ⋅ 617 ⋅ 661 ⋅ 761 ⋅ 1039
⋅ 12976 ⋅ 4637 ⋅ 5821 ⋅ 15649 ⋅ 19139 ⋅ 143443 ⋅ 150151

f = 85

Cost: 17.05

p = pV
318233 with log(p) = 501.2 and

Cost: 12.40

T = 372 ⋅ 5 ⋅ 7 ⋅ 136 ⋅ 17 ⋅ 37 ⋅ 416 ⋅ 53 ⋅ 676 ⋅ 73 ⋅ 1036 ⋅ 127 ⋅ 151 ⋅ 4616 ⋅ 643
f = 145

⋅ 733 ⋅ 739 ⋅ 8276 ⋅ 1009 ⋅ 2539 ⋅ 4153 ⋅ 5059 ⋅ 7127 ⋅ 10597 ⋅ 13591
⋅ 14923 ⋅ 15541 ⋅ 15991 ⋅ 18583 ⋅ 23227 ⋅ 48187 ⋅ 63247 ⋅ 65521 ⋅ 318233

+ larger power-of- for verification 2

Finding parameters for POKE

Old Requirements: [BM25]

(PKE scheme)

Uses prime .

For security, we need ,

p = 2a3bc − 1
2a ≈ 2λ 3b ≈ 22λ
p ≈ 23λ

Finding parameters for POKE (PKE scheme)

Uses prime .

For security, we need ,

p = 2a3bc − 1
2a ≈ 2λ 3b ≈ 22λ
p ≈ 23λ

New requirements (this work):

Uses prime p such that 2aT ∣ p2 − 1
p ≈ 22λ

Old Requirements: [BM25]

Finding parameters for POKE (PKE scheme)

Uses prime .

For security, we need ,

p = 2a3bc − 1
2a ≈ 2λ 3b ≈ 22λ
p ≈ 23λ

New requirements (this work):

Uses prime p such that 2aT ∣ p2 − 1
p ≈ 22λ

Hope: efficiency benefits of using a smaller prime outweighs the performance
penalty incurred by employing smooth -torsion compared to -torsion.T 3b

Old Requirements: [BM25]

Finding parameters for POKE (PKE scheme)

Uses prime .

For security, we need ,

p = 2a3bc − 1
2a ≈ 2λ 3b ≈ 22λ
p ≈ 23λ

New requirements (this work):

Uses prime p such that 2aT ∣ p2 − 1
p ≈ 22λ

We can run the same searches as SQIsign, except with different parameters.

Old Requirements: [BM25]

Parameters for POKE: NIST-I

This work p = p1879 with log(p) = 251.3 and 2fT ∣ (p2 − 1)/2 with

T = 310 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 132 ⋅ 17 ⋅ 19 ⋅ 432 ⋅ 472 ⋅ 732 ⋅ 79 ⋅ 1392 ⋅ 2332 ⋅ 263 ⋅ 3172
f = 129

⋅ 3832 ⋅ 4012 ⋅ 4432 ⋅ 599 ⋅ 643 ⋅ 1231 ⋅ 1301 ⋅ 1549 ⋅ 1879

Concluding thoughts

•Many isogeny-based schemes naturally require
primes with a special shape.

•New protocols show that primes of this special
shape are still relevant despite new HD-
techniques.

•We present two methods for finding such primes
that produce the best parameters in the
literature.

eprint 2024/1150

Extra Slides

XGCD + Boost
First outlined in [DLLW23] (for) and extended in this work.n = 4

High-level idea:
Do the boosting method as described in [BCC+23], but with twin smooths
of size generated using the XGCD approach.

(r, r ± 1)
≈ 22λ/n

XGCD + Boost
First outlined in [DLLW23] (for) and extended in this work.n = 4

High-level idea:
Do the boosting method as described in [BCC+23], but with twin smooths
of size generated using the XGCD approach.

(r, r ± 1)
≈ 22λ/n

XGCD.

Fixing , smoothness bound and parameter to control the search space.n, fn, f′ n B M

Set
 b = ℓki
s ∏ℓj

where are -smooth primes sampled at random, and is a small prime with
 chosen so . Compute with the XGCD method.

ℓj ∉ {2,3} M B ℓs
ki b ≈ 2λ/n (r, r ± 1) = (|sa | , | tb |)

a = 2fn3f′ n ≈ 2λ/n

XGCD + Boost
First outlined in [DLLW23] (for) and extended in this work.n = 4

High-level idea:
Do the boosting method as described in [BCC+23], but with twin smooths
of size generated using the XGCD approach.

(r, r ± 1)
≈ 22λ/n

XGCD.

Fixing , smoothness bound and parameter to control the search space.n, fn, f′ n B M

Set

Boosting. For each pair compute . For all , determine if
 has a sufficiently large -smooth factor.

(ri, ri ± 1) pi = 2(ri)n − 1 pi
p2

i − 1 B

b = ℓki
s ∏ℓj

where are -smooth primes sampled at random, and is a small prime with
 chosen so . Compute with the XGCD method.

ℓj ∉ {2,3} M B ℓs
ki b ≈ 2λ/n (r, r ± 1) = (|sa | , | tb |)

a = 2fn3f′ n ≈ 2λ/n

Sieve + Boost

High-level idea:
Search for primes of the form for a smooth number and
depending on the prime requirements.

p = 2(2fn3f′ nx)n − 1 x fn, f′ n

Sieve + Boost

High-level idea:
Search for primes of the form for a smooth number and
depending on the prime requirements.

p = 2(2fn3f′ nx)n − 1 x fn, f′ n

Sieving.

Fixing and smoothness bound n, fn, f′ n B

Find all -smooth numbers in some suitable range .B x [L, R]

Sieve + Boost

High-level idea:
Search for primes of the form for a smooth number and
depending on the prime requirements.

p = 2(2fn3f′ nx)n − 1 x fn, f′ n

Sieving.

Fixing and smoothness bound n, fn, f′ n B

Find all -smooth numbers in some suitable range .B x [L, R]

Boosting. For all smooth , compute . For all ,
determine if has a sufficiently large -smooth factor.

xi ∈ [L, R] pi = 2(2fn3f′ nxi)n − 1 pi
p2

i − 1 B

