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Motivation

We are motivated by post-quantum cryptography built from isogenies 
between elliptic curves defined over . 

For the efficient computation of isogenies over , protocols often have 
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We are motivated by post-quantum cryptography built from isogenies 
between elliptic curves defined over . 

For the efficient computation of isogenies over , protocols often have 
special requirements on . 

𝔽p2

𝔽p2

p

Cryptographic sized primes  such that  is (sufficiently) smooth.p p2 − 1

Why?  
Factors of  correspond to degrees of isogenies computable over  .p2 − 1 𝔽p2



Twin Smooth Integers
Definition:
For an integer , we say that a pair of consecutive integers  are -smooth twins if 
their product  is -smooth.
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166055401586083680 = 25 ⋅ 33 ⋅ 5 ⋅ 113 ⋅ 23 ⋅ 43 ⋅ 59 ⋅ 67 ⋅ 83 ⋅ 89
166055401586083681 = 72 ⋅ 1710 ⋅ 412



Twin Smooth Integers
Definition:
For an integer , we say that a pair of consecutive integers  are -smooth twins if 
their product  is -smooth.

B (r, r + 1) B
r(r + 1) B

For example, the following are -smooth twins:100

166055401586083680 = 25 ⋅ 33 ⋅ 5 ⋅ 113 ⋅ 23 ⋅ 43 ⋅ 59 ⋅ 67 ⋅ 83 ⋅ 89
166055401586083681 = 72 ⋅ 1710 ⋅ 412

Remark:
If  is prime, then  is -smooth!p = 2r + 1 p2 − 1 = 4r(r + 1) B



A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny 
Diffie-Hellman using twisted torsion



A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)

B-SIDH: supersingular isogeny 
Diffie-Hellman using twisted torsion

Costello, Meyer, Naehrig (EUROCRYPT 2021)

Sieving for twin smooth integers with solutions 
to the Prouhet—Tarry—Escott Problem



A brief history of twin smooths in cryptography

Costello (ASIACRYPT 2020)
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Relaxing the problem
In SQIsign, we don’t need  to be fully smooth.p2 − 1

Requirements:

Other more recent schemes also have this more relaxed requirement (AprèsSQI, 
POKE, …).

with  odd and  is large.


We also need a large power of :  such that 

T ≈ p5/4+ϵ f

3 3f′ ∣ p + 1 2f3f′ ≥ 2λ
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A deeper look at constructive methods
Pell equations

-  a -smooth twin


- , so that  is -smooth


- Let  where  are -smooth and  is square free


- Then  is a solution to the Pell conic 

(r, r + 1) B
x := 2r + 1 x2 − 1 B

x2 − 1 = Dy2 D, y B D
(x, y)

X2 − DY2 = 1

So, solving all  Pell equations will find the complete set of -smooth twins.2π(B) B

Example: with  the largest twins  found by solving all  Pell 
equations have 

B = 113 (r, r + 1) 230

r = 19316158377073923834000 ≈ 275



A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth 
twins:

B

- Let  representing -smooth twins 


- For each  with  compute  
S(0) = {1,2,…B − 1} B (1,2), (2,3), …, (B − 1,B)

r, s ∈ S(0) r < s
t
t′ 

=
r

r + 1
⋅

s + 1
s

 with gcd(t, t′ ) = 1

- Let 


- Repeat with  instead of 


- Terminate when  for some 

S(1) = S(0) ∪ {new solutions t ∣ t′ = t + 1}
S(1) S(0)

S(d+1) = S(d) d



A deeper look at constructive methods
Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth 
twins:

B

Example: Let’s illustrate for . Starting set is .B = 5 S(0) = {1,2,3,4}
We have that 

2
2 + 1

⋅
3 + 1

3
=

8
9

,
2

2 + 1
⋅

4 + 1
4

=
5
6

,
3

3 + 1
⋅

4 + 1
4

=
15
16

So we add  to get 5,8, and 15
S(1) = {1,2,3,4,5,8,15} .

After second and third CHM iterations we get 

S(2) = {1,2,3,4,5,8,15,24} and S(3) = {1,2,3,4,5,8,15,24,80}

We get  so we terminate. Indeed this is the full set of -smooth integers.S(3) = S(4) 5
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Conrey, Holmstrom and McLaughlin (2012) algorithm finds almost all -smooth 
twins:

B

- Luca and Najman (2011) computed the full set of 13,374 twin smooths for  in 
15 days by solving  Pell equations.


- Running the CHM algorithm we find 13,333 of these twins in 20 minutes.

B = 100
225

- The largest run for the Pell equation approach was for . 


- CHM ran their algorithm for  in about 2 weeks to find 346,192 twin smooths, 
the largest of which were the 79-bit integers:

B = 113
B = 200

589864439608716991201560 = 23 ⋅ 33 ⋅ 5 ⋅ 72 ⋅ 112 ⋅ 17 ⋅ 31 ⋅ 592 ⋅ 83 ⋅ 1392 ⋅ 173 ⋅ 181

589864439608716991201561 = 132 ⋅ 1132 ⋅ 1272 ⋅ 1372 ⋅ 1512 ⋅ 1992



A deeper look at constructive methods

Conrey, Holmstrom and McLaughlin (2012) algorithm

[BCC+23] optimised the CHM algorithm and ran it for  to get 82,026,426 twin 
pairs, the largest of which are the 122-bit pair

B = 547

r = 54 ⋅ 7 ⋅ 132 ⋅ 172 ⋅ 19 ⋅ 29 ⋅ 41 ⋅ 109 ⋅ 163 ⋅ 173 ⋅ 239 ⋅ 2412 ⋅ 271 ⋅ 283 ⋅ 499 ⋅ 509

r + 1 = 28 ⋅ 32 ⋅ 312 ⋅ 432 ⋅ 472 ⋅ 832 ⋅ 1032 ⋅ 3112 ⋅ 4792 ⋅ 5232



A deeper look at probabilistic methods
XGCD method

as + bt = 1.

To generate a pair :

1. Choose two -smooth numbers  with .

2. Run XGCD algorithm to find integers  with ,  

such that 


3. If  have large enough smooth factors, we set  
where .


(r, r + 1)
B a, b ≈ 2λ gcd(a, b) = 1

s, t |s | < |b/2 | | t | < |a/2 |

s, t (r, r + 1) = ( |as | , |bt | )
r ≈ 22λ



A deeper look at probabilistic methods
XGCD method

Why does this work? The product of two numbers  of 2 numbers of size
 is much more likely to be smooth than a random integer of size .

s ⋅ t
≈ 2λ ≈ 22λ

Dickman—de Bruijn function

as + bt = 1.

To generate a pair :

1. Choose two -smooth numbers  with .

2. Run XGCD algorithm to find integers  with ,  

such that 


3. If  have large enough smooth factors, we set  
where .
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Let’s consider twins of the form  for even . (xn − 1, xn) n

Why does this work? The polynomial  splits into cyclotomic factors.xn − 1
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A deeper look at probabilistic methods
Cyclotomic factors
Costello (2019) noticed that a lot of twins found with Pell equations were of the 
form .(x2 − 1,x2)

Let’s consider twins of the form  for even . (xn − 1, xn) n

Why does this work? The polynomial  splits into cyclotomic factors.xn − 1
Example: x4 − 1 = (x − 1)(x + 1)(x2 + 1)

 are all smoothℓ − 1, ℓ + 1, ℓ2 + 1,
So we just need to find an integer  such that ℓ

The larger the degree of the factors, the larger the smoothness bound
PTE solutions [CMN21]
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introduce a method to use cyclotomic factors to boost twin smooths.
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The boosting method
These methods don’t scale well to higher security levels. In [BCC+23] we 
introduce a method to use cyclotomic factors to boost twin smooths.

Example:

In [BCC+23], CHM twins were used as inputs (for optimal smoothness bounds). 
In this work, we use different inputs.

Letting , then  is smooth too. Setting  we have 
x = r + 1 x − 1 = r p = 2xn − 1
Let  be -bit smooth twins.(r, r + 1) b

 and  for even 
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-bits of guaranteed smoothness((n + 1)b + 2)

Take  and we have  bits of guaranteed smoothness.
b =
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(CiC 2024)



Combining methods

XGCD 

Sieving

Boosting 

Then we score primes against a cost metric.



Parameters for SQIsign: NIST-I
Previous work p = p3923 with  log(p) = 253.7 and 

T = 365 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 292 ⋅ 372 ⋅ 43 ⋅ 47 ⋅ 79 ⋅ 157 ⋅ 197 ⋅ 239
⋅ 263 ⋅ 271 ⋅ 281 ⋅ 283 ⋅ 307 ⋅ 461 ⋅ 521 ⋅ 563 ⋅ 599 ⋅ 607 ⋅ 619 ⋅ 743
⋅ 827 ⋅ 941 ⋅ 2357 ⋅ 3923

f = 65

Cost: 2.16

[DLLW23]



Parameters for SQIsign: NIST-I

This work

Previous work

p = pI
1973 with  log(p) = 253.7 and 

Cost: 2.01

p = p3923 with  log(p) = 253.7 and 

T = 365 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 292 ⋅ 372 ⋅ 43 ⋅ 47 ⋅ 79 ⋅ 157 ⋅ 197 ⋅ 239
⋅ 263 ⋅ 271 ⋅ 281 ⋅ 283 ⋅ 307 ⋅ 461 ⋅ 521 ⋅ 563 ⋅ 599 ⋅ 607 ⋅ 619 ⋅ 743
⋅ 827 ⋅ 941 ⋅ 2357 ⋅ 3923

f = 65

T = 336 ⋅ 74 ⋅ 11 ⋅ 13 ⋅ 232 ⋅ 37 ⋅ 592 ⋅ 89 ⋅ 97 ⋅ 1012 ⋅ 107 ⋅ 1092 ⋅ 131 ⋅ 137
f = 75

⋅ 1972 ⋅ 223 ⋅ 239 ⋅ 383 ⋅ 389 ⋅ 4912 ⋅ 499 ⋅ 607 ⋅ 7432 ⋅ 1033 ⋅ 1049
⋅ 1193 ⋅ 19132 ⋅ 1973

Cost: 2.16

[DLLW23]

+ larger power-of-  for verification 2



Parameters for SQIsign: NIST-III
Previous work p = p10243 with  log(p) = 381.2 and 

T = 36 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 17 ⋅ 19 ⋅ 2312 ⋅ 47 ⋅ 71 ⋅ 79 ⋅ 1076 ⋅ 109 ⋅ 1276 ⋅ 149 ⋅ 229
⋅ 269 ⋅ 283 ⋅ 3076 ⋅ 349 ⋅ 4016 ⋅ 449 ⋅ 463 ⋅ 5476 ⋅ 1019 ⋅ 1033 ⋅ 1657
⋅ 2179 ⋅ 2293 ⋅ 4099 ⋅ 5119 ⋅ 10243

f = 79

Cost: 6.08

[BCC+23]



Parameters for SQIsign: NIST-III

This work

Previous work p = p10243 with  log(p) = 381.2 and 

T = 36 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 17 ⋅ 19 ⋅ 2312 ⋅ 47 ⋅ 71 ⋅ 79 ⋅ 1076 ⋅ 109 ⋅ 1276 ⋅ 149 ⋅ 229
⋅ 269 ⋅ 283 ⋅ 3076 ⋅ 349 ⋅ 4016 ⋅ 449 ⋅ 463 ⋅ 5476 ⋅ 1019 ⋅ 1033 ⋅ 1657
⋅ 2179 ⋅ 2293 ⋅ 4099 ⋅ 5119 ⋅ 10243

f = 79

Cost: 6.08

[BCC+23]

p = pIII
47441 with  log(p) = 377.9 and 

Cost: 5.67

T = 368 ⋅ 5 ⋅ 712 ⋅ 114 ⋅ 13 ⋅ 474 ⋅ 89 ⋅ 113 ⋅ 1574 ⋅ 173 ⋅ 233 ⋅ 239 ⋅ 241 ⋅ 443
f = 97

⋅ 5094 ⋅ 569 ⋅ 7614 ⋅ 1229 ⋅ 2393 ⋅ 3371 ⋅ 4517 ⋅ 5147 ⋅ 5693 ⋅ 5813
⋅ 9397 ⋅ 26777 ⋅ 39679 ⋅ 47441

+ larger power-of-  for verification 2



Parameters for SQIsign: NIST-V
Previous work [BCC+23]p = p150151 with  log(p) = 507.8 and 

T = 32 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 1712 ⋅ 232 ⋅ 29 ⋅ 376 ⋅ 596 ⋅ 976 ⋅ 127 ⋅ 163 ⋅ 173 ⋅ 191
⋅ 193 ⋅ 211 ⋅ 2336 ⋅ 277 ⋅ 31112 ⋅ 9116 ⋅ 347 ⋅ 617 ⋅ 661 ⋅ 761 ⋅ 1039
⋅ 12976 ⋅ 4637 ⋅ 5821 ⋅ 15649 ⋅ 19139 ⋅ 143443 ⋅ 150151

f = 85

Cost: 17.05



Parameters for SQIsign: NIST-V

This work

Previous work [BCC+23]p = p150151 with  log(p) = 507.8 and 

T = 32 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 1712 ⋅ 232 ⋅ 29 ⋅ 376 ⋅ 596 ⋅ 976 ⋅ 127 ⋅ 163 ⋅ 173 ⋅ 191
⋅ 193 ⋅ 211 ⋅ 2336 ⋅ 277 ⋅ 31112 ⋅ 9116 ⋅ 347 ⋅ 617 ⋅ 661 ⋅ 761 ⋅ 1039
⋅ 12976 ⋅ 4637 ⋅ 5821 ⋅ 15649 ⋅ 19139 ⋅ 143443 ⋅ 150151

f = 85

Cost: 17.05

p = pV
318233 with  log(p) = 501.2 and 

Cost: 12.40

T = 372 ⋅ 5 ⋅ 7 ⋅ 136 ⋅ 17 ⋅ 37 ⋅ 416 ⋅ 53 ⋅ 676 ⋅ 73 ⋅ 1036 ⋅ 127 ⋅ 151 ⋅ 4616 ⋅ 643
f = 145

⋅ 733 ⋅ 739 ⋅ 8276 ⋅ 1009 ⋅ 2539 ⋅ 4153 ⋅ 5059 ⋅ 7127 ⋅ 10597 ⋅ 13591
⋅ 14923 ⋅ 15541 ⋅ 15991 ⋅ 18583 ⋅ 23227 ⋅ 48187 ⋅ 63247 ⋅ 65521 ⋅ 318233

+ larger power-of-  for verification 2
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For security, we need , 

p = 2a3bc − 1
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Uses prime . 

For security, we need , 

p = 2a3bc − 1
2a ≈ 2λ 3b ≈ 22λ 
p ≈ 23λ

New requirements (this work):

Uses prime p such that 2aT ∣ p2 − 1 
p ≈ 22λ

Hope: efficiency benefits of using a smaller prime outweighs the performance 
penalty incurred by employing smooth -torsion compared to -torsion.T 3b

Old Requirements: [BM25]



Finding parameters for POKE (PKE scheme)

Uses prime . 

For security, we need , 

p = 2a3bc − 1
2a ≈ 2λ 3b ≈ 22λ 
p ≈ 23λ

New requirements (this work):

Uses prime p such that 2aT ∣ p2 − 1 
p ≈ 22λ

We can run the same searches as SQIsign, except with different parameters.

Old Requirements: [BM25]



Parameters for POKE: NIST-I

This work p = p1879 with  log(p) = 251.3 and 2fT ∣ (p2 − 1)/2 with 

T = 310 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 132 ⋅ 17 ⋅ 19 ⋅ 432 ⋅ 472 ⋅ 732 ⋅ 79 ⋅ 1392 ⋅ 2332 ⋅ 263 ⋅ 3172
f = 129

⋅ 3832 ⋅ 4012 ⋅ 4432 ⋅ 599 ⋅ 643 ⋅ 1231 ⋅ 1301 ⋅ 1549 ⋅ 1879



Concluding thoughts

•Many isogeny-based schemes naturally require 
primes with a special shape.

•New protocols show that primes of this special 
shape are still relevant despite new HD-
techniques.

•We present two methods for finding such primes 
that produce the best parameters in the 
literature.

eprint 2024/1150
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XGCD + Boost
First outlined in [DLLW23] (for ) and extended in this work.n = 4

High-level idea:
Do the boosting method as described in [BCC+23], but with twin smooths  
of size  generated using the XGCD approach.

(r, r ± 1)
≈ 22λ/n
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Set
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XGCD + Boost
First outlined in [DLLW23] (for ) and extended in this work.n = 4

High-level idea:
Do the boosting method as described in [BCC+23], but with twin smooths  
of size  generated using the XGCD approach.

(r, r ± 1)
≈ 22λ/n

XGCD.

Fixing  , smoothness bound  and parameter  to control the search space.n, fn, f′ n B M

Set


Boosting. For each pair  compute . For all , determine if 
 has a sufficiently large -smooth factor.

(ri, ri ± 1) pi = 2(ri)n − 1 pi
p2

i − 1 B

b = ℓki
s ∏ℓj

where  are  -smooth primes sampled at random, and  is a small prime with 
 chosen so . Compute  with the XGCD method.

ℓj ∉ {2,3} M B ℓs
ki b ≈ 2λ/n (r, r ± 1) = ( |sa | , | tb | )

a = 2fn3f′ n ≈ 2λ/n



Sieve + Boost
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Sieve + Boost

High-level idea:
Search for primes of the form  for a smooth number  and  
depending on the prime requirements.

p = 2(2fn3f′ nx)n − 1 x fn, f′ n

Sieving.

Fixing  and smoothness bound n, fn, f′ n B

Find all -smooth numbers  in some suitable range .B x [L, R]

Boosting. For all smooth , compute . For all , 
determine if  has a sufficiently large -smooth factor.

xi ∈ [L, R] pi = 2(2fn3f′ nxi)n − 1 pi
p2

i − 1 B


