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SQIlsign

SQlIsign is an isogeny-based signature scheme in Round 1 of NIST’s alternate call for
signature schemes.

Small signature and public key size

(Relatively) fast verification

x Slow and complicated signing

New variants [SQIsignzD-West/East, SOIPrime] have showed that SQIsign verification can be done
with (2,2)-isogenies between products of elliptic curves.

We will show that original SQIlsign can also be viewed in this way.



A primer on isogeny-based cryptography

Let ¢ : £, — E, be a (separable) isogeny between elliptic curves E,, E, over [I_:p.

The degree deg ¢ of the isogeny is the size of the kernel.



A primer on isogeny-based cryptography

For £ prime, we can compute an £-isogeny from its kernel using Vélu’s formulae in O(¢)

or in 5(\/?) using \@.

To compute an isogeny of degree ¥, we compute k isogenies of degree ¢

/.C” = P ° °/(P1

N

degree £~ degree £



A primer on isogeny-based cryptography

We work with supersingular £ so it’s (isomorphic to a model) defined over [, .

We can enforce 2| #E([F,2) so that we have [ »-rational Z-isogenies



The isogeny problem

1/2)

The best classical attack: Delfs—Galbraith runs in 5(p

The best quantum attack: Biasse—Jao—Sankar runs in O(p /%)



Key Generation

SQIlsign
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A deeperlook at the response isogeny

- Naive response:

@chall ° Pcom ° Psk

Completely leaks the secret isogeny!

- Instead we find an equivalent isogeny ?sig
using the KLPT algorithm.

- The isogeny output by this algorithm has degree 2° E g e E2
Psig

NIST-I prime has 27> rational torsion and e = 975, and so we perform the response isogeny in 13 steps



SQIlsign: verification
Uncompressed Signatures

- @sig is given as a list of kernel generators

K, K>, ..., K3

Psig

Pchall



SQIsign verification in detail

Uncompressed Signatures

- @sig is given as a list of kernel generators

K, K>, ..., K3 E1

Pchall
- K hay1 = H(E, | | m) generates challenge

Isogeny

()
EA ﬂ,E(l)ﬁ. E(Z)(p_3, ﬂEzzEé



SQIsign verification in detail

Compressed Signatures

- @sig is given as a list of scalars

S1, 89y .0y S5 € 212777 E1
At each step i: Pchall
1) Deterministically sample a basis
(P, Q) = EV"D[27]
@ @ @ @ ?
2) Obtain the kernel generator as E A —1> E(l) —2> E (2) —3> —13> E2 — Eé

We can also compress E; needed for the challenge.



Moving to dimension 2



Abelian surfaces

There are two types of (principally polarised) abelian varieties of dimension 2:

- Jacobians of hyperelliptic curves 7 -
- Products of elliptic curves E; X E,

Superspecial abelian surfaces are (isomorphic to a model) defined over [,



Hyperelliptic curves

Elliptic Curves Genus-2 Hyperelliptic Curve
E:y"=x"+Ax+B C: y*=f(x), deg(f)=50r6




Hyperelliptic curves

Elliptic Curves Genus-2 Hyperelliptic Curve
E:y"=x"+Ax+B C: y*=f(x), deg(f)=50r6

F




Jacobians and Divisors

Mumford Representation

Let 7 ~ be the Jacobian of the genus 2 curve C.

We will represent an element of the Jacobian

Py = (x,y1) HQQ ‘r OO |

Dpz(Pl)_I_(PZ)_DOOEJC Py = (x5, ;)

using the Mumford representation {a(x), b(x))

o0

.

deg 5 4{[ deg 6
a(x) — (x T xl)(‘x o x2)’ b(xl) — yl D_ = 2(c) D, = ( +)+(Oo__)

with D = (1,0).



Jacobians and Divisors

Welierstrass

Mumford Representation points

Let 7 ~ be the Jacobian of the genus 2 curve C.

We will represent an element of the Jacobian

P, = (x;,y,)
Dp=(P)+(P)— Dy €Jc p'_ o) O O

using the Mumford representation {a(x), b(x))

a(x) = (x —x)x —x,), b(x) =y,
with D, = (1,0).

Example: two-torsion points

Pairs of Weierstrass points (w;,0),(w;,0) —— D = ((x — w)(x — w)),0)



Abelian surfaces

Let ¢ : of | = 9, be a homomorphism between abelian surfaces. We say that ¢ is an isogeny
if it is surjective and has finite kernel.

Three types of isogenies:

EyXEy— Jc Sc—= Fc Sc— By XE,
Glue Split



Abelian surfaces

Let ¢ : of | = 9, be a homomorphism between abelian surfaces. We say that ¢ is an isogeny
if it is surjective and has finite kernel.

We consider (2,2)-isogenies. The kernel G is generated by R, S € _#,[2] such that e,(R, S) = 1.



Rosenhain Curves

Genus-2 Hyperelliptic Curve

Elliptic Curves
E:y =x+Ax+B C: y*=f(x), deg(f)=5o0r6
Montgomery Form Rosenhain Form
c 02— _ _
Fat Y7 =X = )l = L) Cryuwt ¥ = 3 = D = Dx = ) = )

For our cryptographic applications, we work with superspecial Jacobians, and so we can enforce full
rational 2-torsion.



Kummer surfaces

Kummer Line Kummer surfaces
“fast x-only arithmetic” arithmetic?
%E=E/(il> %C=JC/<i1>
4 coordinates
__~ 1coordinate — X1, X, X3, X,
K = P! K- < P3
——

The quotient map destroys the group structure, but we still have a pseudo-group law.



Fast arithmetic on Kummer surfaces

Kummer surfaces from Kummer surfaces from
general hyperelliptic curves Rosenhain curves
General Kummer surfaces Kummer surfaces arising from theta
(Cassels & Flynn) functions

Fast arithmetic!



Kummer surfaces in mathematics

The general Kummer surface
has thus been the subject of
interest in mathematics (see
Cassels—Flynn).

Lots of theory developed for
theta functions of level 2 by
Cosset, Lubicz, Robert, and
others.

Allows us to develop the theory
of Kummer surfaces.

Kummer surfaces in cryptography

Kummer surfaces in HECC

Introduced to cryptography by
Gaudry (2004), who extended
work by the Chudnovsky
brothers (1986).

Hyperoptimised version in 2014
using the squared Kummer:

Kummer strikes back

(Bernstein, Chuengsatiansup, Lange, Schwabe)

Faster than elliptic curve Diffie-
Hellman using parallelisation.

Allows us to have fast
arithmetic.

Kummer surfaces in isogenies

General (2,2)-isogeny formulae
due to Dartois, Maino, Pope,
and Robert (2023).

(2,2)-isogeniesin a special setting
developed by Costello (2018).

Allows us to have fast isogeny
formulae.



Fast arithmetic on Kummer surfaces

Analogously to Weierstrass vs. Montgomery, the canonical and squared Kummer surface
has the faster arithmetic.

The arithmetic and (2,2)-isogenies are built from these 4 simple building blocks:

S: (X, Xy X3: X)) o> (X7 X321 X3 1 X7 o canmecompuivans
Inv: (X, : X, : X3 : X)) = (/X : /X, 0 /Xy 0 1/X,) multiplications



Fast arithmetic on Kummer surfaces

We work with the squared model

KU E-X XXX, = (X7 + X5 + X5+ X7) — F- (X, X, + X,X5)

where E, I, G, H are rational functions in the identity point (¢ @, : p3 : Hy)

We also work with constants (A : B?: C?: D?) = H(p, @ py s 2 y),
which will appear in the isogeny formulae later.



Scholten’s construction

Scholten gives explicit equations to construct J, /I, from E,,/ [, by taking the “Weil

restriction’.
We can view this as a special type of glueing.
b, / {2
~ ~ $
(p) N N
E., X Eg / ! 2 glue> Ja/ A
P /7
(P) ) 7
Ea / A p2



b, X E

(p)

/

Elliptic Kummer surfaces

glue

N ]qur/ \




Isogenies between Kummer surfaces

A (2,2)-isogeny of Kummer surfaces is

a morphism @ such that the following
diagram commutes.




Isogenies between Kummer surfaces

Let’s consider the general case of I]_:p—rational (2,2)-isogenies between %Z°?'/IF, with kernel G.

PG = S o AG 0 CInV(A:B:C:D) > M

L Linear map given by a 4x4 matrix whose

entries are fourth roots of unity



Isogenies between Kummer surfaces

Let’s consider the general case of I]_:p—rational (2,2)-isogenies between %Z°?'/IF, with kernel G.

PG = S o AG 0 CInV(A:B:C:D) > M

b Requires square roots to compute
Inv(A:B:C:D).

Can also use rational 4-torsion lying above
in some cases



Isogenies between Kummer surfaces

Let’s consider the general case of [I_:p—rational (2,2)-isogenies between %Z°?'/IF, with kernel G.
PG = S o AG 0 CInV(A:B:C:D) > M

We now specialise this to the elliptic Kummer surface case.



Isogenies between elliptic Kummer surfaces

Let D € E_[4] a 4-torsion point. Then (D) € & ,|2] a 2-torsion point.

E., : » E./{[2]D)
K. C K./ (D))




Isogenies between elliptic Kummer surfaces

Let D € E_[4] a 4-torsion point. Then (D) € & ,|2] a 2-torsion point.

E, ; > Eo/([2]D)
K. * L Ko/(0(D))

wiptic Kummer surface!



Isogenies between elliptic Kummer surfaces

Let D € E_[4] a 4-torsion point. Then (D) € & ,|2] a 2-torsion point.

E, ; > Eo/([2]D)
K. * L Ko/(0(D))

Note: the kernel of the isogeny is now defined by one 2-torsion point!



Isogenies between elliptic Kummer surfaces

Ey:y* =2z —a)(r —1/a)

E., > E,/((0,0))

P0
COST

Obtaining image: 8a

Evaluating at a point: 8M + 8a
N~ h

]Ca 70 > ]Ca/<K()>

Yo — CInV(AQ:BQ:C’Q:DQ) oSoH

Ko = (pa s pg o po s p) or (ps = g c py o po)



Isogenies between elliptic Kummer surfaces
Ey:y* =2z —a)(r —1/a)

> Eo/((,0))

L
87 ¢a
Pa = SoHo CInV(A:B:C':D) o H

Scaling factor Inv(A : B : C : D) computed

with 3M + 8a using the 4-torsion lying above
the kernel generator

Ko=(1:0:0:7)or (1:0:7:0)

COST
Fq $1/a ’ Ea/<(1/047 O)> Obtaining image: 1M + 32a
_ /
Pl/o = SoH o C'”V(A:B:C‘D) o F Evaluating at a point: 8M + 16a
H’(X:Y:Z:T):H(—X:Y:Z:T)
<+ o1 /e v Kijo=(t:0:0:1)0r (7:0:1:0)
Koz ? /CCX/<K1/Oé>



Chains of (2,2)-isogenies

We show how to construct (non-backtracking) chains of (2,2)-isogenies.



Chains of (2,2)-isogenies

We show how to construct (non-backtracking) chains of (2,2)-isogenies.

y’

Ki—— Ko

L0, Par P1/a
WA

ker o1 N ker gy = ()




Chains of (2,2)-isogenies

We show how to construct (non-backtracking) chains of (2,2)-isogenies.

]Cl Y1 ]CQ P2 /Cg

P05 Pas P1/a Pas P11/«



Chains of (2,2)-isogenies

We show how to construct (non-backtracking) chains of (2,2)-isogenies.

©1 P2 ¥3
K1 ICo Ks ————

P05 Pas P1/a



Chains of (2,2)-isogenies

We show how to construct (non-backtracking) chains of (2,2)-isogenies.

Ki—— Ko

L0y Payr P1/a

90047901/0& }Cg 90047901/04

For a chain of length k, if we have [Fp—rational 21 torsion on K1, at each step we can compute the

scaling using the 4-torsion.



SQIsign with Kummer surfaces

Recall: SQIsign verification is performed in 13 steps

E,=pp%M 2, p@ 2, . 22, p2) 8, p3) = f ,




SQIsign with Kummer surfaces

We can instead map this down to Kummer surfaces and compute isogenies defined over [,

~

E. x E((Xp) > /C(l) P1 N K(Q) P2 S P12 N /C(12) P13 X K(lS) s B, X E(zf)



SQIsign with Kummer surfaces

We can instead map this down to Kummer surfaces and compute isogenies defined over [,

Lo

~

//7
//// \ gﬂsig //

Uncompressed Signatures

E(()zp )

Psig is given as a list of kernel generators Klv KZ? s K1 3 € Fsqr [276]

Box BY s () P (@) P2, 12, pe(12) P18 pe(13) g )



Compressed signatures?

Recall compress our elliptic signatures we needed:
' Deterministic point sampling to compute a basis (P;, ;) = E/"V[27°]

*Three point ladder on the Kummer line to compute the kernel generator K. = P; + 5.0



Compressed signatures?

*Deterministic point sampling to compute a basis (P,, Q;) = # (i=Dr279]

*Three point ladder on the Kummer surface to compute the kernel generator K; = P; + 5.0



Compressed signatures?

*Deterministic point sampling to compute a basis (P,, Q;) = # (i=Dr279]

*Three point ladder on the Kummer surface to compute the kernel generator K; = P; + 5.0

e

Problem: Given P;, Q; and scalar s; compute P; + 5,0.

1) Compute [s,]Q; using scalar multiplication
We develop efficient PointDifference

2) Compute the point difference P; — s5;0; and ThreePointLadder algorithms.

3) From P,, [5,]10;, P; — s;0,, compute the kernel generator P; + 5,0; using
a three point ladder



Compressed signatures?

*Deterministic point sampling to compute a basis (P,, Q;) = # (i=Dr279]

*Three point ladderjon the Kummer surface to compute the kernel generator K; = P; + 5.0

Problem: Sample points deterministically

Solution: use pairings!



SQIsign compressed signatures

Now we know how to compute K. = P; + 5.0.. How does the signer compute s for each step?

Point Compression (by Signer)

1) Sample basis P;, Q. on Kummer surface deterministically

2) Map K, P,, Q. to their corresponding points on the Jacobian

3) Compute the discrete logarithm s; such that K; = P, + 5,0



SQIsign compressed signatures

Now we know how to compute K. = P; + 5.0.. How does the signer compute s for each step?

Point Compression (by Signer)

1) Sample basis P;, Q. on Kummer surface deterministically

2) Map K, P,, Q. to their corresponding points on the Jacobian

3) Compute the discrete logarithm s; such that K; = P, + 5,0

We develop a new efficient algorithm for this



Conclusions

*We show how SQIsign verification can be seen as a protocol between Kummer
surfaces.

*We build a toolbox of new techniques to facilitate SQIsign verification of
compressed signatures.

* Using our methods, new practical higher dimensional protocols may be enabled.

Ok%:30

Any questions?

For more details: eprint 2024/948



